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The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS),
capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous
United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and
interpretation. Validation of coarse-resolution products often relies on independent data derived frommoderate-
resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no cor-
responding source of high-resolution, multispectral imagery that has been systematically collected in space and
time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution
images and Landsat science products can help increase user's confidence in the Landsat science products, butmay
not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived
BAECVproduct. Burned area extentwasmapped for Landsat image pairs using amanually trained semi-automat-
ed algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003,
2008). Three datasets were independently developed by three analysts and the datasets were integrated on a
pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We
found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset
inwhich pixelsweremapped as burned if at least two of the three analysts agreed. BAECV errors of omission and
commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five val-
idation years. Errors of omission and commission were lowest across the western CONUS, for example in the
shrub and scrublands of the AridWest (31% and 24%, respectively), and highest in the grasslands and agricultural
lands of theGreat Plains in central CONUS (62% and 57%, respectively). The BAECV product detectedmost (N65%)
fire events N10 ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results
demonstrate that a thorough validation of Landsat science products can be completed with independent
Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolu-
tion data.
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1. Introduction

Accurate mapping of the extent and timing of burned area is critical
to quantifying and modeling greenhouse gas emissions (Crutzen and
Andreae, 1990; Palacios-Orueta et al., 2005; Randerson et al., 2005), car-
bon and nutrient cycling (Conard et al., 2002; Bond-Lamberty et al.,
2007), and changes to ecosystem structure (Thonicke et al., 2001;
Goetz et al., 2005). Consequently, fire disturbance has been identified
by the Global Climate Observing System (GCOS) program as one of
the high priority Essential Climate Variables (ECV) (Global Climate
Observing System, 2004) and major efforts have been undertaken to
produce global burned area products (Mouillot et al., 2014). The
hoof).
products developed to-date use coarse-scale satellite imagery (300 m
to 1 km) (e.g., Moderate Resolution Imaging Spectrometer (MODIS)
burned area product (MCD45, MCD64), Geoland2, fire_cci burned area
(BA)). Such datasets provide information critical for climate modeling
and are effective for capturing globalfire patterns at a high temporal fre-
quency, butmay be limited in their ability tomapfire heterogeneity, de-
tect small fires (Stroppiana et al., 2012) or provide enough historical
context, necessary to discern temporal trends (Mouillot et al., 2014)
and relationships with climate and other drivers (Podur et al., 2002;
Miller et al., 2009;Whitman et al., 2015). In addition, because of the tre-
mendous amount of spectral diversity in the signal of burned areas
across diverse vegetation types, fire combustion levels (e.g., ash, char,
soot), and burn severities (e.g., ground vs crown fires), the accuracy of
existing global burned area products is relatively lowwith documented
errors of omission and commission for burned areas ranging from 51%
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to 93%, and 42% to 94%, respectively (Padilla et al., 2014a, 2015;
Chuvieco et al., 2016).

This study presents a validation of the Landsat Burned Area Essential
Climate Variable (BAECV) product across a sample set of locations and
times using an independently derived reference dataset. The BAECV, de-
veloped by the U.S. Geological Survey (USGS), aims to capitalize on the
long time period covered by Landsat imagery to provide wall-to-wall
maps of burned areas across the conterminous United States (CONUS)
(1984–2015), and could be extended to other regions with appropriate
training data (Hawbaker et al., 2017). The product will be provided as a
wall-to-wall raster of burned area across CONUS at 30m resolution and
an annual time-step, with a minimum fire size of 4.05 ha (45 pixels)
(https://www.sciencebase.gov/catalog/item/
57867943e4b0e02680c14fec). Landsat sensors can provide a longer
temporal record of burned area relative to existing global burned
area products and potentially with increased accuracy and detail
(Stroppiana et al., 2012). Landsat has been used extensively to map
burned areas, predominantly for local and regional studies (Mitri and
Gitas, 2004; Bastarrika et al., 2011; Petropoulos et al., 2011; Mallinis
and Koutsias, 2012). In recent years Landsat has been used to map fire
and other disturbance types across portions of CONUS but for limited
years (Masek et al., 2008; Boschetti et al., 2015) and/or Landsat path/
rows (Cohen et al., 2010; Kennedy et al., 2010; Thomas et al., 2011).
These efforts have been largely restricted to forest cover and fire is
often not distinguished from other disturbance types (e.g., harvest, in-
sect) (Goward et al., 2016). The most comparable effort to date is the
Monitoring Trends in Burn Severity (MTBS) product which is also de-
rived from Landsat (Eidenshink et al., 2007). The BAECV differs from
the MTBS dataset in several important ways. Because the BAECV prod-
uct generation is automated, the BAECV can potentially provide a
more complete census of burned areas, relative to the MTBS dataset
which relies on manually mapping reported large fires (≥2 km2 in the
eastern U.S. and ≥4 km2 in the western U.S.) (Eidenshink et al., 2007).
The BAECV utilizes all available Landsat images, in contrast theMTBS ef-
fort began prior to the Landsat archive becoming freely available in
2008, which required them to be strategic in their image selection for
the earlier years of the dataset. In addition, the MTBS made a conscious
decision to provide limited mapping of prescribed fires, common in the
southeastern United States due to the sheer number of such fires. De-
spite the advantages, automation can be expected to introduce errors
in burned area extent (e.g., missing fires, over-mapping fires, or
disagreeing on fire extent), necessitating an independent validation of
the BAECV product.

Validation of burned area products and the provision of accuracy sta-
tistics to users is essential to allow users to decidewhen and how to uti-
lize datasets, correctly interpret results, and provide feedback to
improve products (Roy et al., 2005;Morisette et al., 2006). The Commit-
tee on Earth Observation Satellites (CEOS), Land Product Validation
Subgroup (LPVS), formed in 2000, has specified that validation is a crit-
ical component in the generation of ECV products, and should follow in-
ternationally agreed upon validation best practices to measure
accuracy, precision (standard error of accuracy estimates), and tempo-
ral stability at comprehensive spatial and temporal scales (Morisette
et al., 2006). Validations typically produce pixel-level or point-level
error matrices, derived by cross-tabulating ECV products with indepen-
dent reference maps (Bastarrika et al., 2011; Stroppiana et al., 2012;
Padilla et al., 2014a, 2015). Linear regression analysis has also been
used to compare the proportion of burned area defined by the product,
relative to reference maps (Roy et al., 2008; Roy and Boschetti, 2009).
Comparisons between global burned area products have also examined
differences in the spatial and temporal distribution of burned area and
calculated patch indices to explore a product's ability to map small
fires (Chuvieco et al., 2016).

The source of reference datasets varies by study andproduct. Fire pe-
rimeter datasets, such as the U.S. Geospatial Multi-Agency Coordination
(GeoMAC) dataset, tend to either focus on large fires or are designed to
meet the needs of fire managers and do not provide a complete census
of all fires (Eidenshink et al., 2007; Walters et al., 2011). This design
makes perimeter datasets good references for large, single fire events
(Mitri and Gitas, 2004; Henry, 2008; Bastarrika et al., 2011), but insuffi-
cient for a validation at a national or global scale. Because of the limita-
tions of fire perimeter datasets, burned area maps derived from
remotely sensed imagery are typically validated using a reference map
derived from a finer resolution source of imagery (Roy and Boschetti,
2009; Mallinis and Koutsias, 2012; Padilla et al., 2014a). For coarse-res-
olution products this is non-problematic, as moderate-resolution
sources of imagery, collected at regular intervals, are widely available
(e.g., Landsat and ASTER) (Roy and Boschetti, 2009).

The utilization of high-resolution imagery (e.g., IKONOS, Quickbird-
2, Geoeye-1, Worldview-2, 3) to validate a national or global burned
area product, however, faces several challenges. High-resolution imag-
ery has been successfully utilized to detect burned areas (Mitri and
Gitas, 2006; Holden et al., 2010; Mallinis and Koutsias, 2012). Yet, as
the satellites typically collect imagery on demand, the coincidence of
images collected over burned patches, prior to vegetation recovery, is
sporadic making it challenging to defend a sampling strategy and re-
quiring classification of burned area from a single image instead of a
pre- and post-fire image pair. In addition, these satellites have only
been in orbit since late 1990s or early 2000s, meaning they can only
be used to validate a portion of the temporal extent of a Landsat science
product. These satellites also typically lack short-wave infrared (SWIR)
bands, which have been found to be useful in detecting burned areas
(Chuvieco, 1997). The spatial scale at which fire events occur should
also be considered relative to the reference data. The small extent of
high-resolution images (13 to 18 km across), relative to Landsat image
extents (185 km across) means only portions of larger fires are often
contained within high-resolution imagery, limiting the number of fire
events being validated.

Instead of using high-resolution imagery, validation of Landsat
disturbance products to date have typically relied on the derivation
of independent datasets from Landsat images, complemented by
high-resolution imagery, as available (Thomas et al., 2011; Masek
et al., 2013). Burned patches are often visually distinct, but have
high spectral diversity resulting from variability in soil type, pre-
fire vegetation cover, fire severity and time since fire, and that can
make it challenging to detect burned areas across diverse environ-
ments in an automated manner (Bastarrika et al., 2011). Therefore,
forest disturbance events are identified through the visual examina-
tion of pre- and post- Landsat images by experienced image analysts
(Masek et al., 2008; Huang et al., 2009; Stroppiana et al., 2012). Al-
though including a manual component in imagery analysis is a com-
mon practice to improve the quality of reference datasets (e.g., Mitri
and Gitas, 2004; Henry, 2008; Petropoulos et al., 2011), observer-de-
pendent variability has also been documented, although not explicit-
ly for mapping burned areas (Mazz, 1996; Baveye et al., 2010). Using
multiple observers is one technique that has been used to reduce er-
rors of omission in other areas of science and image analysis, but is
not widely done (Mazz, 1996; Nichols et al., 2000).

Thorough validation of remote sensing products is essential prior to
their acceptance by the scientific community, proper use, and integra-
tion into management and modeling activities. This study seeks to vali-
date USGS's Landsat BAECV (1984–2015) using an independent dataset
derived from Landsat across a sample of 28 Thiessen scene areas and
five years, complemented by high-resolution imagery. Our research
questions included:

(1). How does the subjectivity of visual image interpretation affect
the quality of the reference dataset and influence accuracy statistics?

(2). What is the accuracy of USGS's BAECV across diverse land cover
types and regions of the conterminous U.S. (CONUS)?

(3). How stable are the accuracy statistics through time?
(4). How does burn size influence the accuracy of the BAECV

product?
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2. Methods

2.1. BAECV product algorithm

The BAECV algorithm is explained in detail in Hawbaker et al.
(2017). The algorithm is a supervised machine learning approach and
relied heavily on the MTBS data as the primary source of observed
burned area to train and evaluate the algorithm. Of the 32 years of
Landsat 4, 5, and 7 data (1984–2015), MTBS data were not available
for 2014 or 2015 at the time of the product generation. Of the remaining
30 years for which MTBS data were available, 24 of these years were
used to derive training data points, and the remaining 6 years (1988,
1993, 1998, 2003, 2008, and 2013) were retained for testing and valida-
tion. The BAECV algorithm uses a suite of predictor variables calculated
from dense time series of Landsat data including both single-scene, pre-
fire surface conditions (e.g., 3-year lagged means and standard devia-
tions), and change from pre-fire surface conditions. These variables
were used as the inputs to train a generalized boosted regression
model (Hastie et al., 2009) which uses a sequence of classification and
regression tree models (Breiman et al., 1984) to predict the probability
that a pixel has burned in any given Landsat image. Burn classification
images were generated by applying thresholds and a region-growing
method to the burn probability images so that pixels with very high
burn probability (≥98%) and adjacent pixels with high burn probability
(≥95%) were also classified as burned. Burned area patches b4.05 ha
(45 pixels) were removed.

2.2. Validation sampling design

The fire_cci project, part of the European Space Agency's (ESA) Cli-
mate Change Initiative (CCI) generated a global reference dataset for a
burned area product that met the CEOS LPVS stage 3 validation require-
ments. They used a stratified sampling scheme to select 102 global
Fig. 1. A) The spatial distribution of the validation Thiessen scene areas (TSAs) based on Lands
resolution image locations in relation to the U.S. Environmental Protection Agency's Level I eco
Thiessen scene areas (TSAs), constructed by Cohen et al. (2010) from
Landsat World Reference System II (WRS-II), across diverse biomes,
fire regimes, and climate conditions (Padilla et al., 2014a). The TSAs pro-
vided non-overlapping partitioning of the study region. The fire_cci's
global reference dataset was limited temporally and only included
2008 as the standard year for validation of all fire_cci products (Padilla
et al., 2014a, 2015).

Our sample design to validate the BAECV was implemented to be
complementary to the fire_cci project. We used stratified, random,
one-stage cluster sampling, where each cluster was defined by a
Thiessen scene area (Stehman, 2009). Using this sampling design, we
augmented the existing fire_cci validation TSAs (n = 9) within CONUS
with an additional 19 TSAs for a total of 28 TSAs (Fig. 1). The TSAs
were stratified across the major Olson biomes (Olson et al., 2001)
(Fig. 1). We used the same, simplified versions of Olson's biomes as
used by the fire_cci project. Within CONUS, this included (1) temperate
forest, (2)Mediterranean forest, (3) temperate grassland and savannah,
(4) tropical and subtropical grasslands and savannah, and (5) xeric/de-
sert shrub (Padilla et al., 2014a). TSAswith a burn area extent above the
80th percentile in 2008 within a given biome were defined as high
burned area stratum. Burn area extent was defined using the Global
Fire Emissions Database (GFED) version 3 (Giglio et al., 2009, 2010).
We sampled disproportionately in the high burned area stratum to en-
sure that enoughburned areawasmappedwithin the reference dataset.
We acknowledge that if a path/rowwas identified as a high burned area
stratum in 2008 it may not have been classified similarly in the other
sample years, however using consistent path/rows between years
allowed for the reference dataset to contain variability in burned area
extent between years and allowed us to test for temporal stability in ac-
curacy statistics between years. The final number of TSAs included in
the sample and within CONUS is shown in Table 1. We similarly used
2008, and additional years were included to represent 5-year incre-
ments and help assess the temporal stability of the BAECV products
at path/rows in relation to Olson terrestrial biomes, and B) the validation TSAs and high-
regions.

Image of Fig. 1


Table 1
Distribution of sampled and population Thiessen scene areas (TSAs) by biome and stratum. Each sampled TSA was then sampled for 5 separate years, however high/low BA stratumwas
determined from 2008, alone. Total number is calculated for the conterminous United States (CONUS). BA: burned area.

Biome Total TSAs
sampled

High BA stratum
sampled

Low BA stratum
sampled

Total number of
TSAs

Total high BA
stratum

Total low BA
stratum

Temperate forest 11 6 5 224 45 179
Mediterranean forest 3 2 1 12 2 10
Temperate grassland and
savanna

5 2 3 124 25 99

Tropical & subtropical savanna 4 2 2 7 2 5
Xeric/desert shrub 5 3 2 83 17 66
CONUS 28 15 13 450 91 359
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(2008, 2003, 1998, 1993 and 1988). The specific Landsat path/rows and
years used to validate were specifically avoided when training the
BAECV, ensuring the independence of the pixels used in the accuracy
assessment.

2.3. Landsat-resolution reference dataset

Reference data were generated from pre- and post-fire cloud-free
(b20% cloud cover) Landsat Thematic Mapper (TM) and Enhanced The-
matic Mapper Plus (ETM+) images for each of the 28 validation path/
rows and 5 validation years. Images were limited to those with a
RMSE b10 m and available as a L1T Surface Reflectance product. The
dates of the 140 pre- and post-fire image pairs (a total of 280 Landsat
images) were selected tomaximize the amount of burned area mapped
and are listed in the (Appendix Table A1). The pre- and post-image pairs
do not specifically represent a probability sample within a year, but
were designed to target changes incurred over the peak fire season.
Peak fire season was determined using the distribution of total burned
area by month as derived from the MODIS burned area product
(MCD45, 2001–2015). The distribution of the image pairs in relation
to peak fire season by U.S. ecoregion is shown in Table 2. The time gap
between the pre- and post-fire images averaged 90 days, but ranged
from 16 to 319 days. “New” burned area (post-fire – pre-fire) maps
were generated using the Burned Area Mapping Software (BAMS),
which is a semi-automated algorithm developed by the University of
Alcala, Madrid (Bastarrika et al., 2014; Padilla et al., 2014a). The algo-
rithmwas trained onmanually selected polygons containing (1) clearly
burned pixels and (2) spectrally similar but less distinct burned pixels
(Bastarrika et al., 2014). Four vegetation indices were calculated for
the pre- and post-fire images, and these were utilized in a supervised
classification. Indices used included the Normalized burn ratio (NBR,
García and Caselles, 1991; Key and Benson, 2006), the Mid-infrared
Burned Index (MIRBI, Trigg and Flasse, 2001), the Global Environmental
Monitoring Index (GEMI, Pinty and Verstraete, 1992) and the Normal-
ized Difference Vegetation Index (NDVI, Tucker, 1979). The algorithm
applied a region-growing function between the two types of training
polygons, while cut-off values for each variable were extracted from
the training polygons. Additional details are provided in Bastarrika et
al. (2011, 2014).
Table 2
The distribution of the image pairs (pre- and post-Landsat images) in relation to the peak fire

Ecoregion Peak fire season BA occurring in peak
season (%)

Pairs occurred in
non-peak season (%)

Pairs o
season

Arid West June–August 70 20 42.5
Mountain
West

July–September 91 0 56

Great
Plains

March–April and
Sep-Oct

39 and 37 (76 total) 0 100

East Sept-Oct and
Nov-May

48 and 50 (98 total) 0 93
The output maps were manually edited. When available, the ana-
lysts utilized ancillary datasets (e.g., MTBS, MODIS active fire points,
MODIS burned area, aerial imagery) to improve confidence in their se-
lection of training pixels and manual edits. Manual edits were complet-
ed for almost every image and primarily consisted of removing fire
commission errors. Common sources of error thatwere corrected for in-
cluded non-fire related change within agricultural and wetland cover
types, drought related vegetation mortality, clear-cutting events, and
occasional spectral confusion with bare rock and open water. The
FMask from the Landsat surface reflectance product was applied to
mask out clouds, cloud shadows, snow and open water (Zhu and
Woodcock, 2014). For Landsat 7 ETM+ images SLC off pixels were
masked out. The low-, medium- and high-intensity development clas-
ses (i.e., urban areas) were masked out using NLCD data (Homer et al.,
2015) to reduce spectral confusion between burned areas and impervi-
ous surfaces. Fires with patch sizes of b4.05 ha (45 pixels) were also re-
moved from the reference data to be comparable with the minimum
mapping unit of the BAECV product.

Due to the substantial subjectivity involved in visual image interpre-
tation, three different analysts individually generated a burned area
map for each validation TSA and year. From these outputs, three rendi-
tions of the reference burned area maps were generated, in which
burned area extent ranged from liberal (or inclusive) to conservative
(exclusive). Burned area extent was defined as 1) at least one analyst
agreed a given pixel was burned (1 agreed) (inclusive), 2) at least two
of the three analysts were required to agree a given pixel was burned
(2 agreed), 3) all three analysts were required to agree a pixel was
burned (3 agreed) (exclusive).

2.4. High-resolution reference dataset

The reference burned area map used to validate the BAECV was se-
lected by comparing all three renditions of the reference dataset to
high resolution imagery. The criteria for the QuickBird-2 imagery (2 m
resolution) acquired from Digital Globe was that it 1) contained newly
burned areas and 2) was located within the validation TSAs and years.
QuickBird-2 imagery is collected on demand; images with burned
areas are largely incidental, limiting the number of images found. Six-
teenQuickBird-2 imageswere used, representing four states (California,
season for each ecoregion. BA: burned area.

verlapped peak
(%)

Pairs spanned entire peak
season(s) (%)

Pairs overlapped or spanned entire
peak season(s) (%)

37.5 80
44 100

0 100

7 100



Table 3
TheQuickBird-2 imageryused to compare the three renditions of the reference dataset. All
Landsat images were from the Thematicmapper sensor. SC: South Carolina. ID: Idaho. CA:
California. WA: Washington.

State Landsat
path/row

Number of
quickbird-2
images

quickbird-2
date

Landsat
pre-image
date

Landsat
post-image
date

SC p16r37 3 21-Apr-08 10-Feb-08 1-May-08
SC p16r37 2 8-Jun-08 10-Feb-08 1-May-08
ID p41r29 1 13-Aug-03 20-Jul-03 24-Oct-03
CA p43r35 3 13-Nov-08 14-May-08 19-Sep-08
CA p44r33 1 18-Nov-08 6-Jun-08 12-Oct-08
WA p45r28 3 28-Sep-03 14-Jun-03 3-Sep-03
WA p45r28 1 25-Sep-03 14-Jun-03 3-Sep-03
WA p45r28 1 2-Sep-03 14-Jun-03 3-Sep-03
WA p45r28 1 28-Aug-03 14-Jun-03 3-Sep-03
Total: 5

path/rows
16 images
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Washington, Idaho and South Carolina) and five of the 28 path/rows
(p16r37, p41r29, p43r35, p44r33, p45r28) (Table 3, Fig. 1). The
QuickBird-2 imagery was atmospherically corrected and converted to
ground reflectance using ATCOR (the Atmospheric Correction module)
in PCI Geomatica (Richter and Schläpfer, 2016). Burned areawas identi-
fied using maximum likelihood supervised classification with null
values, in which each imagewas trained onmanually selected “burned”
and “unburned” polygons. A sieve filter was applied to reduce noise in
the output images with the filter size varying based on the amount of
noise produced by each classification. Burned area outputs were further
manually edited in ArcGIS 10.3 using visual interpretation of the
QuickBird-2 imagery as well as ancillary datasets (e.g., MTBS, MODIS
fire points) as relevant. Image processing was completed using PCI
Geomatica.
2.5. Comparison of the Landsat reference dataset versions

Because of the small number of high-resolution images used and the
often larger than ideal date gap between the post-fire Landsat images
and the high-resolution images, this analysis should not be interpreted
as a validation of the reference dataset, but instead a means to compare
the three version of the referencedataset. To determinewhich rendition
of the reference dataset to use, the reference dataset (30 m resolution)
was up-sampled to match the QuickBird-2 data (2 m resolution) for a
pixel to pixel comparison (Padilla et al., 2014a). Metrics presented in-
cluded overall accuracy, omission error, commission error, dice coeffi-
cient, and relative bias. Omission and commission errors were
calculated for the category “burned” (Roy and Boschetti, 2009; Padilla
et al., 2014a). The dice coefficient is the conditional probability that if
one classifier (product or reference data) identifies a pixel as burned,
the other one will as well, and therefore integrates omission and com-
mission errors (Fleiss, 1981; Forbes, 1995). The relative bias provides
the proportion that burned area is under (negative) or overestimated
(positive) relative to the total burned area of the reference product
(Padilla et al., 2014a). We note that the burned area within the Landsat
reference dataset is calculated as change between post- and pre-fire im-
ages,while the high-resolution imagery is assumed to be post-fire, a po-
tential inconsistency between the datasets. In addition, burned areas for
which we observed disagreement between the Reference burned area
and the high-resolution burned area (i.e., one mapped a fire and other
did not, not disagreement regardingmappingwithinfire heterogeneity)
we used ancillary datasets (MODIS fire points and MTBS) to determine
the best known date of the fire. If the differences in image collection
date in relation to the date of the fire was found to be the cause of the
disagreement, then the burned area was masked out and not included
in the comparison.
2.6. Validation of the BAECV

The reference datawere designed tomap all burned patches that oc-
curred between the two selected Landsat scenes (pre-fire and post-
fire). Even though the BAECV algorithm examines each individual
Landsat image, its final products are annual composites (Hawbaker et
al., 2017). To create comparable reference and BAECV datasets, the
BAECV product was modified to apply the burn classification step to
the pre-fire and post-fire scenes used to create the reference data and
then making sure that only “new” burned area that occurred between
the two scenes was assessed. The number of burned and unburned
pixels included in the validation, as defined by the reference dataset,
are provided in the (Appendix Table A2). Accuracy metrics reported in-
cluded overall accuracy, omission error, commission error, dice coeffi-
cient, and relative bias and were reported from pixel-level summaries.
Omission and commission errors were calculated for the category
“burned” as calculated by Padilla et al. (2014a). The dice coefficient
and relative bias metrics are described above in section 2.5. To account
for the influence of stratification and clustering (Stehman, 1997), the
pixel-level accuracy metrics were calculated for each TSA, individually.
Standard errors, reported for accuracy metrics by ecoregion and
CONUS, were then estimated accounting for the stratified sampling de-
sign (Stehman et al., 2007; Padilla et al., 2015). The general estimator for
each accuracy metric was defined as the stratified combined ratio esti-
mator (Cochran, 1977):

R̂ ¼ ∑H
h¼1Khyh

∑H
h¼1Khxh

ð1Þ

where H is the number of strata, Kh is the size of stratum h,yh and xh are
the samplemeans of yt and xt of stratumh, and yt and xt are the numer-
ator and denominator of each accuracy metric equation, respectively

(Padilla et al., 2014a; Appendix A). The estimated variance of R̂ was in
turn defined as:

V̂ R̂
� �

¼ 1
ccX2

∑
H

h¼1

K2
h

kh kh−1ð Þ∑t∈h
d2t ð2Þ

where, kh is the number of TSAs sampled in stratum h and X̂ and dt are
defined as:

X̂ ¼ ∑
H

h¼1
Khxh ð3Þ

dt ¼ yt−yhð Þ−R̂ xt−xhð Þ ð4Þ

Lastly, the standard error was calculated as:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ ystð Þ

q
ð5Þ

Linear regressions were also performed, comparing the amount of
burned area mapped by the reference dataset to the amount of burned
area mapped by the BAECV product (ha per TSA and year). Accuracy
metrics were presented by ecoregions (Fig. 1), land cover type, and
burn size. Ecoregions were based on the U.S. Environmental Protection
Agency's Level I ecoregions and included the Mountain West, Arid
West, Great Plains and East (Omernik and Griffith, 2014) (Fig. 1).
Ecoregions were presented as they are more commonly used in the
United States than Olson's biomes and show similar spatial patterns in
their distribution (Fig. 1). The National Land Cover Database (NLCD)
(Homer et al., 2015) was used to stratify the validation results by land
cover type. The relative abundance of NLCD land cover types within
each of the ecoregions are shown in Table 4. TheAridWest is dominated
by shrub/scrub, the Mountain West is dominated by evergreen forest



Table 4
The relative abundance of National Land Cover Database (NLCD) land cover types across
CONUS and within each of the four U.S. Environmental Protection Agency Level I
ecoregions.

NLCD land cover types
(2006)

CONUS (ha) CONUS
(%)

Arid
West
(%)

Mountain
West (%)

Great
Plains
(%)

East
(%)

Deciduous forest 87,625,705 12.1 0.4 3.9 3.0 26.7
Evergreen forest 93,412,343 12.9 9.6 50.8 1.7 9.9
Mixed forest 16,186,130 2.2 0.4 1.9 0.1 4.8
Shrub/scrub 174,633,568 24.2 64.8 23.2 12.4 4.0
Grasslands/herbaceous 117,627,598 16.3 9.3 10.7 36.9 2.7
Pasture/hay 53,751,191 7.4 1.6 1.8 6.7 11.9
Cultivated crops 125,299,764 17.3 5.4 1.3 30.4 16.0
Woody wetlands 31,243,109 4.3 0.4 0.8 1.0 9.5
Emergent herbaceous
wetlands

10,501,421 1.5 0.4 0.5 1.3 2.0

Other (developed,
barren, open water)

12,110,510 1.7 7.7 5.1 6.5 12.5
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and shrub/scrub, the Great Plains is dominated by grasslands and culti-
vated crops and the East is the most diverse, dominated by deciduous
forest, evergreen forest, pasture/hay, and woody wetlands (Table 4).

To evaluate if therewas a relationship between accuracy and burned
area size, the reference dataset was converted to shapefiles. Polygons
from a single year, co-located within 1 km of each other were aggregat-
ed into a single burned area polygon. This step prevented heteroge-
neous fires, which map as multiple polygons, from being considered
multiple small fires. Any overlap between the BAECV and aggregated
reference data was considered detection of a burn event. Errors of omis-
sion were calculated for burned areas based on binned size classes.

Temporal stability, or the change in the accuracy of the product over
time, is a validation component required by the CEOS LPVS. Cuzick's Test
for Trend, a nonparametric extension of the Wilcoxon rank-sum test
(Cuzick, 1985), was used to detect a temporal trend in the BAECV accu-
racymetrics (omission error and commission error) from 1988 to 2008.
To test for significant differences in median accuracy (omission error
and commission error) among years, a nonparametric test was used,
the repeated measures analysis of variance (ANOVA) with a rank trans-
formation. A rank transformed repeatedmeasures ANOVAwas selected
over the Friedman rank sum test as used by Padilla et al. (2014b). Unlike
the Friedman rank sum test, the rank transformed repeated measures
ANOVA incorporates both the rank of accuracy scores, as well as the
magnitude of differences in accuracy (Zimmerman and Zumbo, 1993).
The error statistics calculated for each TSA and yearwere used as the in-
puts into each of the temporal stability statistical tests.

3. Results

3.1. Comparison of Landsat reference dataset renditions

The three renditions of the Landsat reference dataset were com-
pared to 16 high-resolution images, each of which contained at least
one burned patch. As the rendition of the burned area extent became
Table 5
Comparisonof the three renditions of the Landsat reference dataset to burnedareadefined
by the QuickBird-2 imagery. Errors of omission and commission were calculated for
burned areas only.

Accuracy metrics Reference - 1
agreed

Reference - 2
agreed

Reference - 3
agreed

Burned area omission error
(%)

47 32 24

Burned area commission
error (%)

30 33 40

Overall accuracy (%) 94 94 93
Dice coefficient (%) 61 68 67
Relative bias (%) −24 1 27
more conservative (i.e., more analysts were required to identify a
pixel was burned), errors of omission for burned areas decreased from
47% to 24%, while errors of commission for burned areas increased
from 30% to 40% (from the most liberal to the most conservative rendi-
tion of the reference dataset) (Table 5). The rendition of the reference
dataset in which burned area extent was defined by requiring at least
two of the three analysts to identify a pixel as burned showed the best
balance between errors of omission (32%) and commission (33%)
(Table 5). The “2 agreed” rendition of the Landsat reference dataset
was therefore selected as the primary reference dataset for validation
of the BAECV. However, the “1 agreed” and “3 agreed” renditions are
still helpful in bounding uncertainty of error estimates.

We can visually compare patterns between the high-resolution im-
agery, the Landsat “2 agreed” reference dataset and the BAECV. Some
fire events showed high agreement among those mapped with the
QuickBird-2 imagery, the Landsat reference dataset and the BAECV
(Fig. 2). In such cases, errorwas primarily disagreement regardingwith-
in-fire heterogeneity (Fig. 2). In contrast, other fire events, such as those
mapped in South Carolina woody wetlands showed adequate agree-
ment between the QuickBird-2 output and the Landsat reference
dataset, but poor agreement with the BAECV (Fig. 3). Differences in
the detection or omission of fire events between the QuickBird-2 and
Landsat referencemap demonstrate the challenge of using high-resolu-
tion imagery. It is unclear howmuchof thedifference between the high-
resolution image and the reference dataset represents “true” error, or if
some portion of the disagreement is due to QuickBird-2 mapping “old”
fires not expected to be mapped by the Landsat reference dataset or the
BAECV. This problem stems from the limited availability of same-year,
pre-fire imagery from high-resolution data sources.

3.2. Pixel-level validation of the BAECV

Accuracy of the BAECV varied depending on the rendition of the ref-
erence dataset used. BAECV errors of omission were lowest using the “3
agreed” rendition of the reference dataset, while errors of commission
were lowest using the “1 agreed” rendition of the reference dataset
(Table 4). In Fig. 4 we show an example of variation between the
three reference datasets, relative to the BAECV. Using the “3 agreed, ren-
dition, for example, instead of the “2 agreed” renditionwould have clas-
sified the BAECV's pixels within the northern burned area in the
example provided, as errors of commission (Fig. 4). Differences in accu-
racy were substantial among the three levels, for instance in the Arid
West errors of omission ranged from 27% to 52% from 3 to 1 analysts
agreed, and errors of commission ranged from 16% to 39% from 1 to 3
analysts agreed (Table 6). The version of the reference dataset used in-
fluenced the accuracy results of the Great Plains the least and the East,
the most. Changing what version of the reference dataset was used to
validate the Great Plains changed omission error by 10% and commis-
sion error by 17% (Table 6). In the East, changingwhat version of the ref-
erence dataset was used to validate the East BAECV changed omission
error by 26% and commission error by 33% (Table 4). The range in
error rates across the three renditions of the reference dataset can
help bound uncertainty levels.

The accuracy of the BAECV when compared to the reference dataset
(“2 agreed”) showed high overall accuracy (N99%) across all ecoregions
because of the prevalence of unburned areas and the relative ease of
mapping unburned as unburned relative to accurately mapping burned
areas (Table 6). When errors of omission and commission for burned
areas were calculated, errors varied between ecoregions (Table 6).
Both errors of omission and commission were lowest in the Arid West
(31% and 24%, respectively) and highest in the Great Plains (62% and
57%, respectively) (Table 6). Over 30% of the Great Plains is mapped as
cultivated crops or cropland by NLCD (Table 4) (Homer et al., 2015).
Burned patches within and adjacent to cropland are not typically
mapped by federal fire perimeter datasets and are often too small to
be identified by coarse resolution sensors. They therefore potentially



Fig. 2. An example comparison of a burned area within shrub/scrub cover in California as mapped by QuickBird-2 (image collected on November 18, 2008), the Landsat reference dataset
(“2 agreed”) (post-image collected on October 12, 2008, path 44, row 33) and the Burned Area Essential Climate Variable (BAECV) (post-image, October 12, 2008, path 44, row 33).
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represent a novel contribution of the BAECV. Lower accuracywithin this
cover type, however, influenced overall accuracy particularly in the
Great Plains and East. Excluding the cropland cover type reduced com-
mission error from 59% to 51% in the Great Plains and reduced omission
error in the East from 63% to 50%. Cultivated crops also showed the
weakest accuracy when burned area accuracy was assessed by NLCD
cover type (Table 7).

Differences in accuracy among land cover types can also be contex-
tualized by considering differences in the relative frequency or abun-
dance of burned area among land cover types. Burned area was most
often identified by the BAECV in shrub/scrub (32%), evergreen forest
(24%) and grasslands (21%) land cover types (Table 7). Shrub/scrub
Fig. 3.An example comparison of a burned areawithinwoodywetlands in South Carolina asma
agreed”) (post-image collected on May 1, 2008, path 16, row 37) and the Burned Area Essen
represent high-resolution image extent and areas masked due to fires occurring between imag
showed one of the lowest omission and commission errors for burned
area (32% and 23%, respectively), while evergreen forest (40% and
33%, respectively) and grasslands (40% and 32%, respectively) showed
errors of omission and commission similar or better than the average
accuracy across CONUS (42% and 33%, respectively) (Table 8). Examples
of agreement and disagreement between the reference dataset and the
BAECV across multiple land cover types are shown in Fig. 5.

The amount of burned area by TSA and year were compared be-
tween that mapped by the reference dataset and that mapped by the
BAECV. Significant correlations were observed in the Mountain West
and Arid West, even after excluding a TSA with much higher burned
area than other TSAs in the Arid West (Fig. 6). The correlation in the
pped byQuickBird-2 (image collected on April 21, 2008), the Landsat reference dataset (“2
tial Climate Variable (BAECV) (post-image, May 1, 2008, path 16, row 37). White areas
e collection dates.

Image of Fig. 2
Image of Fig. 3


Fig. 4.A comparison from southern California (path 43, row 35, 2003) between the pre- and post-Landsat images used to derive the reference dataset, the three renditions of the reference
dataset (1 to 3 analysts agreed a pixel was burned), and the Burned Area Essential Climate Variable (BAECV).
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Great Plains was heavily influenced by an outlier TSA, in which the
BAECV missed actively burning agricultural fires. In the East, the corre-
lation was weak using all TSAs, but became significant when excluding
the cultivated crops cover type from TSAs, suggesting that the BAECV's
accuracy within active agricultural areas limits its use for monitoring
trends in agricultural fires in this region (Fig. 6). When all TSAs and
years were considered together the amount of burned area detected
by the BAECV was significantly correlated with the amount of burned
area detected by the reference dataset (r2 = 0.62, RMSE = 3057 ha, p
b 0.01) (Fig. 7).

At the scale of CONUS, the accuracymetrics including errors of omis-
sion, dice coefficient and relative bias varied substantially between the
five sample years, suggesting the importance of sampling frommultiple
years (Table 8). Commission errors were relatively stable between the
five sampled years. Omission errors, however, were particularly high
in 1993 (69 ± 8%) and particularly low in 2008 (19 ± 6%) (Table 8).
The year 1993 was a wet year across much of the CONUS, in particular
the Mountain West, resulting in very little burned area in the reference
dataset. The smaller burned area sample size in the reference dataset
would have exaggerated the importance of errors and could have
Table 6
Variation in the accuracy of the BurnedArea Essential Climate Variable (BAECV)when using the
2008). Standard errors, calculated as variation in accuracy statistics between Thiessen scene area
the selected “2 agreed” rendition of the Landsat reference dataset.

Ecoregion Rendition Overall accuracy Omission error (%)

Arid West 1 agreed 99.9 (0.03) 52 (7)
2 agreed 99.9 (0.02) 31 (6)
3 agreed 99.7 (0.02) 27 (7)

Mountain West 1 agreed 99.8 (0.04) 48 (4)
2 agreed 99.8 (0.03) 41 (7)
3 agreed 99.8 (0.02) 37 (12)

Great Plains 1 agreed 99.9 (0.09) 68 (12)
2 agreed 99.9 (0.04) 62 (9)
3 agreed 99.8 (0.04) 58 (9)

East 1 agreed 99.9 (0.06) 78 (7)
2 agreed 99.9 (0.04) 67 (8)
3 agreed 99.8 (0.04) 53 (8)
potentially influenced the aggregated results. Standard errors decreased
from individual years to aggregated years because of the increase in
sample size, given a TSA as the sample unit (Table 8).

3.3. Validation by fire size

According to GCOS requirements and the climate-modeling commu-
nity there is a desire for a product that detects burned area patches
smaller than 25 ha (Chuvieco et al., 2016). A primary advantage ofmap-
ping fires with Landsat relative to coarser resolution imagery is the abil-
ity to detect smaller fires. The BAECV aims tomap fire events as small as
4.05 ha (10 acres). We evaluated the ability of the BAECV to detect fires
by burned area size. Omission error related to the BAECV missing small
fires may be difficult to interpret in a pixel-level analysis where large
fires may contribute relatively more pixels for comparison. An analysis
of detection/non-detection by fire size, however, can help highlight po-
tential biases within pixel-based accuracy statistics. Across all
ecoregions, the BAECV detected 50% of the 10 to 25 ha burned area
patches, this percent increased as fire size increased up to 87% for
large fires (N300 ha) (Table 9). Similar to the pixel-level accuracy
three renditions of the reference dataset (1 to 3 analysts agreed a pixelwas burned) (1988–
s, are shown in parentheses. Shaded cells indicate the validation results by ecoregion using

Commission error (%) Dice coefficient (%) Relative bias (%)

16 (2) 61 (7) −43 (13)
24 (3) 72 (7) −10 (16)
39 (3) 67 (9) 19 (21)
18 (5) 63 (4) −37 (9)
32 (5) 63 (5) −13 (16)
46 (3) 58 (5) 18 (13)
51 (9) 39 (11) −35 (14)
57 (9) 40 (6) −10 (12)
68 (9) 36 (5) 31 (12)
35 (4) 33 (5) −66 (11)
47 (5) 41 (4) −37 (15)
69 (5) 38 (5) 53 (18)

Image of Fig. 4


Table 7
Variation in accuracy by the National Land Cover Database (NLCD) land cover type (using the “2 agreed” rendition of the reference dataset). Errors of omission and commission are pre-
sented for burned areas only. The relative distribution of burned area (BA) between cover types is also shown for the reference (28 Thiessen scene areas (TSAs)) and Burned Area Essential
Climate Variable (BAECV) datasets (28 TSAs). Overall accuracy was 99.5% or higher across all land cover types and therefore is not shown.

Land cover typea BA ha (%) (Reference) BA ha (%) (BAECV) Omission error (%) Commission Error (%) Dice coefficient (%) Relative bias (%)

Deciduous forest 2.0 2.6 33 34 67 2
Evergreen forest 21.6 24.0 40 33 63 −11
Mixed forest 5.0 6.2 20 20 80 0
Shrub/scrub 29.1 32.1 32 23 73 −12
Grasslands/herbaceous 18.6 20.6 40 32 64 −11
Pasture/hay 1.3 2.7 51 70 37 63
Woody wetlands 2.0 2.2 39 31 64 −12
Emergent wetlands 8.8 4.0 76 33 36 −63
Cultivated crops 11.5 5.6 90 88 11 −15

a Certain land cover classes were not included due to its exclusion from BAECV (e.g., developed) or minimal number of burned pixels (e.g., perennial ice/snow, bare rock, etc.).
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statistics, the BAECV experienced more omission in the East relative to
other ecoregions. In the Mountain West, for example, 76% of the 10 to
25 ha burned areas were detected and this only increased with larger
fires (Table 9).

3.4. Temporal stability of the BAECV

Temporal stability in the accuracy of a product has been identified as
essential for climate modelers and other users of burned area to be able
to interpret trends in burned area over time. The temporal stability of
the BAECV was evaluated across the five validation years (1988, 1993,
1998, 2003 and 2008). There was no statistical trend in the error of
omission (z = −1.41, p = 0.16) or the error of commission (z =
−1.38, p = 0.17) over the validation years (1988 to 2008) as deter-
mined by Cuzick's Test for Trend, despite the potential for a trend due
to a documented change in Landsat 5′s satellite orbit over its 27-year
time series (Zhang and Roy, 2016). We also tested for significant differ-
ences in accuracy between years, not related to a temporal trend. There
were no statistically significant differences between the errors of omis-
sion (F=2.32, p=0.13) and errors of commission (F=3.15, p=0.08)
between the validation years as determined by a repeated measures
ANOVA with a rank transformation. As the BAECV is expanded to in-
clude Landsat-8 data, it will be important to evaluate any potential
change in accuracy.

4. Discussion

Since the opening of USGS's Landsat archive in 2008, there has been
great interest in generating relevant, remotely sensed products from
Landsat imagery (Hansen and Loveland, 2012; Kovalskyy and Roy,
2013;Masek et al., 2013). Validation of such products iswidely accepted
as necessary (Morisette et al., 2006; Hansen and Loveland, 2012). Given
the long temporal range of Landsat imagery (1972–present) and mod-
erate spatial resolution (30 m), however, it is challenging to generate
and defend an independent dataset that can adequately validate
Landsat-derived science products. Such a dataset must show a defend-
able sampling design and include a substantial number of observations
Table 8
Variation in accuracy by year for the conterminousUnited States (CONUS) (1988–2008) using th
are presented for burned areas only. Standard errors, calculated as variation in accuracy statisti
Area Essential Climate Variable.

Year Overall accuracy Omission error (%) Commission error (%) Dice coefficie

1988 99.8 (0.04) 37 (8) 38 (6) 62 (5)
1993 99.9 (0.04) 69 (8) 28 (6) 44 (8)
1998 99.9 (0.02) 45 (9) 32 (8) 61 (8)
2003 99.8 (0.05) 56 (12) 29 (5) 54 (10)
2008 99.8 (0.05 19 (6) 32 (6) 74 (6)
88-’08 99.9 (0.02) 42 (6) 33 (3) 62 (4)
over both space and time. Disturbance-related products have taken ad-
vantage of spectrally diverse, but visually consistent changes in Landsat
images (pre and post disturbance) that can be used to improve the iden-
tification of disturbances by incorporating amanual interpretation com-
ponent (Henry, 2008; Petropoulos et al., 2011; Thomas et al., 2011).
Relying on Landsat for both product generation and validation, howev-
er, limits our ability to assess inaccuracies imposed by the satellite sen-
sor itself, such as spectral data quality, geolocation and mixed pixels
(Strahler et al., 2006). It also prevents us from being able to quantify po-
tential errors of omissionwithin the BAECV due to the return interval of
the Landsat satellites. This source of error can be expected to primarily
occur in cover types that experience rapid recovery ormanipulation fol-
lowing a fire event, for example fires within grassland and agricultural
cover types. This approach, however, also has strengths in that it re-
duces problems of image registration and eliminates false error due to
time gaps between the reference dataset and product dataset.

A novel component of our approach was that three independent
datasets were derived and differences between the three datasets
were used to bound uncertainty and improve confidence in our Landsat
reference dataset. This approach showed that manually derived refer-
ence datasets that are typically considered “truth” can show consider-
able variability between analysts and still show disagreement when
compared, for example, to burn patches mapped with high-resolution
imagery. Defining burned area extent as requiring at least two of the
three analysts to identify a pixel as burned, best balanced errors of omis-
sion and commission within the reference dataset. In the future, other
alternatives could also be considered including havingmultiple analysts
reach a consensus on pixels for which analysts disagreed. This finding
could be used to improve future efforts to generate independent refer-
ence datasets.

The accuracy of the BAECV can be contextualized by comparing it to
other efforts to map burned area with Landsat as well as global burned
area datasets derived from coarser resolution imagery. When burned
area algorithms are optimized for site level performance, the accuracy
can exceed 95% (e.g., Mitri and Gitas, 2004; Petropoulos et al., 2011).
As study areas grow in size, accuracy often starts to decrease (e.g., 15%
to 30% error for burned area) due to variance imposed by local factors
e “2 agreed” rendition of the Landsat reference dataset. Errors of omission and commission
cs between Thiessen scene areas (28 per year), are shown in parentheses. BAECV: Burned

nt (%) Relative bias %) Burned area (Reference, ha) Burned area (BAECV, ha)

3 (15) 85,485 87,288
−57 (12) 59,636 24,457
−20 (11) 50,964 40,613
−38 (12) 118,093 56,827
19 (16) 101,607 120,628
−14 (8) 415,785 329,814
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(Bastarrika et al., 2011; Mallinis and Koutsias, 2012; Goodwin and
Collett, 2014). Several Landsat-based efforts have mapped disturbance
(fires, clearcut and insect mortality) across parts of CONUS but limited
efforts to forest. The validations corresponding to thesemapping efforts
have relied on manual interpretation of Landsat images with errors of
Fig. 5. Examples of the Landsat pre-fire and post-fire image pairs and corresponding agreeme
areas (TSAs) that showed errors of omission and commission, at the scale of a TSA, similar to
the Oregon fires within grasslands, the Texas fires within emergent herbaceous wetlands, and
omission and commission averaging 40–45% and 20–30%, respectively
(Masek et al., 2008; Thomas et al., 2011). Validation for these efforts
was supplemented using Forest Service Inventory and Analysis (FIA)
plots and showed errors of omission and commission averaging 36%
(0 to 100%) and 64% (26 to 100%), respectively. More recently,
nt and disagreement between the reference dataset and BAECV from four Thiessen scene
the average observed across CONUS. The Georgia fires occurred within evergreen forest,
the California fires within mixed forest and shrub/scrub.

Image of Fig. 5


Fig. 6. The correlation between the amount of burned area identified by the reference dataset and the amount of burned area identified by the Burned Area Essential Climate Variable
(BAECV) (blue) for ecoregions including A) the Mountain West, B) the Arid West, C) the Great Plains and D) the East. Each point represents the hectares burned by Thiessen scene
area (TSA) and year. The correlation in the Arid West is shown with and without (red) an outlier TSA with much higher burned area than the other TSAs in the sample. The
correlation in the Great Plains region is shown with and without (red) an outlier TSA with high rates of omission by the BAECV. The correlation in the East is shown with and without
(red) pixels classified as cultivated crops within each TSA, a cover type that showed higher rates of omission by the BAECV. RMSE: root mean square error.
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Boschetti et al. (2015) mapped burned areas from Landsat for a single
year acrossmuch of thewestern United States. Relative to MTBS perim-
eters, the burned area extent showed 51% omission error and 14% com-
mission error.

The spectral diversity within burned patches can be expected to in-
crease as the vegetation and cover type diversity increases, as is the case
in national and global scale efforts. This makes high levels of accuracy at
these larger spatial extents considerably more challenging. We can use
NLCD as a non-fire example of a national Landsat-based product. Al-
though overall accuracy of NLCD cover classes averaged 78–79% for
NLCD 2001 and 2006, the accuracy of cover class change was quite
poor, with errors of omission ranging from 61 to 89% and errors of com-
mission ranging from18 to 73% (Wickhamet al., 2013). At a global scale,
accuracy of existing global burned area products, derived from coarser
resolution imagery, also shows relativelyweak accuracy. Errors of omis-
sion for such products have been documented to range from 51% to 93%
for omission error and from 36% to 94% for commission error (Padilla et
al., 2015; Chuvieco et al., 2016). This error may be higher for specific
vegetation types. For example, although the MODIS burned area prod-
uct (MCD45) performed well relative to other global burned area prod-
ucts (Padilla et al., 2015), it performed the worst in temperate forest
(99% omission, 95% commission), which is a major biome across
CONUS (Fig. 1).

Relative to other documented validation efforts, the BAECV's error
rates (errors of omission and commission averaged 42% and 33%, re-
spectively across CONUS) outperformed accuracy statistics reported
for coarser resolution global burned area products and showed rates
of error slightly higher than efforts using Landsat imagery but
constrained to forested cover types. Differences in the BAECV's error
rates between ecoregions, in turn, can primarily be explained by issues
specific to particular vegetation cover types. For instance, omission and
commission errors were highest in agricultural cover types (i.e., culti-
vated crops and hay/pasture). In agricultural areas, frequent changes
in site condition (green vegetation, non-photosynthetic vegetation,
burned, tilled) make it challenging to use change-detection approaches
to distinguish burn events. The limited training data within active agri-
cultural areas also likely contributed to the poor performance within
this cover type. Errors of omissionwere also high in emergentwetlands,
inwhich afire event often results in a transition fromvegetation to open
water. A portion of the errors may have also been related to variable se-
verity. For example, prescribed fires, common in the southeastern U.S.
are typically intended to clear understory vegetation (Waldrop et al.,
1987, 1992), and therefore may be more difficult to detect if the over-
story vegetation is largely undisturbed. Similarly, slightly higher error
rates within evergreen forest, relative to other forest types, could be re-
lated to missing understory fire events, potential confusion with other
sources of tree mortality, such as bark beetle damage, andmisclassifica-
tion within shaded pixels, common in high-relief environments, which
are often dominated by evergreen forest.

Pixel-based accuracy metrics can help explain spatial variability in
accuracy between biomes, ecoregions or land cover types; however,
such metrics can confound error from disagreement in mapping within

Image of Fig. 6


Table 9
The percent of burned areas (or fire events) detected by the Burned Area Essential Climate
Variable (BAECV) by fire size and region. Burned areas binned by size were derived from
an aggregated version of the Landsat reference dataset (all polygons within 1 km of each
other were considered as a single fire) to avoid fragmented or heterogeneous fires being
considered as more than one fire. All years were combined (1988–2008).

Ecoregion 4.05 to 10
ha (%)

10 to 25
ha (%)

25 to 50
ha (%)

50 to 100
ha (%)

100 to
300 ha (%)

N300
ha (%)

Arid West 42 69 80 68 82 98
Mountain
West

33 76 70 80 97 100

Great Plains 56 58 77 81 89 93
East 27 43 47 63 66 75
Conterminous
U.S.

32 50 54 67 74 87

Total Fire
Count

250 339 283 224 287 301

Fig. 7. The correlation between the amount of burned area identified by the reference
dataset and the amount of burned area identified by the Burned Area Essential Climate
Variable (BAECV) across the conterminous U.S. (CONUS) where each point represents a
Thiessen scene area (TSA) and year. All cover types are included, but the correlation is
shown with and without (red) an outlier TSA with much higher burned area than the
other TSAs in the sample. RMSE: root mean square error.

Table A1
The Landsat images used to generate the reference dataset. All images are from the Landsat TM
were identified by comparing a post-fire and pre-fire date, necessitating an image pair per pat

1988 1993 1998

Path/row Pre-fire date Post-fire date Pre-fire date Post-fire date Pre-fire da
p15r35 6-Jul 26-Oct 9-Feb 15-May 27-Apr
p15r41 27-Jan 16-Mar 28-Mar 15-May 14-May
p15r42 16-Mar 4-Jun 28-Mar 15-May 11-Mar
p16r31 29-Jul 15-Sep 23-Jun 19-Oct 11-Oct
p16r37 7-Mar 8-Apr 6-May 22-May 1-Mar
p18r38 8-May 18-Dec 14-Feb 19-Apr 11-Jan
p24r29 31-Mar 2-May 5-Oct 21-Oct 26-Apr
p24r39 2-May 7-Sep 27-Mar 6-Nov 10-Apr
p25r40 6-Mar 22-Mar 2-Mar 26-Sep 13-Dec
p26r40 24-Jan 14-Apr 12-May 1-Sep 8-Apr
p26r41 24-Jan 14-Apr 31-Jul 20-Nov 8-Apr
p26r42 24-Jan 13-Mar 6-Feb 9-Mar 19-Jan
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fire heterogeneity with error from mapping false fires or missing fires.
The relative importance of each error type is likely to depend on the ap-
plication of the dataset, but supplementing pixel-based accuracy met-
rics with additional assessments such as linear regressions and
detection/non-detection by fire size can help provide a more complete
understanding of the distribution of error within the BAECV. For exam-
ple, the BAECV reliably mapped large fires (N25 ha) across most
ecoregions, but was less reliable in its ability to consistently map small
fires, particularly those under 10 ha.We saw significant correlations be-
tween themagnitudes identified as burned by the BAECV and reference
dataset, but also observed that outlier TSAs could have a strong influ-
ence on the strength of this correlation.

5. Conclusion

The BAECV, by largely automating the detection of burned areas and
using the entire Landsat archive, potentially provides a more complete
census of fires across all regions of the conterminous United States, im-
proving our knowledge of fires in traditionally underrepresented land
cover types such as grasslands and agricultural areas. Error within the
BAECV was most concentrated in several land cover types, specifically
the BAECV tended to underestimate burned area within emergent wet-
lands, overestimate burned area in pasture/hay and show high rates of
both omission and commission in areas dominated by cultivated
crops. Errors of omission were also higher for small fires (b10 ha). In
contrast, errors were lowest in forest, shrub/scrub, and grassland, land
cover types dominant across much of western and eastern CONUS. No
temporal trend in accuracy was observed over the validation years se-
lected. The BAECV is only one of several ongoing USGS efforts to create
Landsat-based science products. Validation of disturbance-related
Landsat science products may depend heavily on creating independent
datasets from Landsat to validate systematically across space and over
the entire temporal extent of the Landsat archive. Adding a manual
component can potentially improve the accuracy of the validation
dataset, however, variability in analyst interpretation can be substantial
and should be considered.
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sensor except for the starred dates, where images are from Landsat ETM+. Burned areas
h/row and year.

2003 2008

te Post-fire date Pre-fire date Post-fire date Pre-fire date Post-fire date
21-Nov 14-Jul 19-Nov 26-May 27-Jun
1-Jul 20-Jan 8-Mar 24-Apr 26-May
12-Apr 20-Jan 8-Mar 24-Apr 11-Jun
14-Dec 18-May 5-Jul 7-Apr* 16-Oct*
21-Jun 27-Jan 31-Mar 10-Feb 1-May
26-Nov 9-Jan 23-Oct 15-May 31-May
17-Sep 8-Apr 26-May 1-May* 2-Jun*
31-Jul 1-Oct 20-Dec 9-May 28-Jul
29-Dec 30-Mar 9-Nov 30-Apr 19-Jul
10-May 29-Sep 18-Dec 20-Mar 24-Jun
11-Jun 29-Sep 18-Dec 20-Mar 24-Jun
20-Feb 17-Jan 8-May 20-Mar 24-Jun

Image of Fig. 7


Table A1 (continued)

1988 1993 1998 2003 2008

p30r30 16-Aug 15-Sep 24-May 29-Sep 9-Jul 11-Sep 1-Mar 20-May 17-Apr 19-May
p30r36 21-Feb 25-Mar 2-Feb 6-Apr 19-Mar 11-Sep 23-Jul 25-Sep 12-Feb 3-May
p33r30 4-Jul 6-Sep 2-Sep 4-Oct 31-Aug 5-Dec 12-Jul 14-Sep 9-Jun 29-Sep
p35r35 28-Mar 13-Apr 12-Jun 14-Jul 9-May 26-Jun 12-Sep 14-Oct 7-Jun 9-Jul
p36r35 4-Apr 22-May 22-Aug 9-Oct 16-May 3-Jul 1-Jul 21-Oct 21-Nov 7-Dec
p37r38 16-Jul 4-Oct 9-May 26-Jun 21-Apr 8-Jun 12-Oct 15-Dec 29-Feb 20-May
p39r34 11-May 16-Sep 23-May 5-Dec 19-Apr 24-Jul 4-Jun 6-Jul 19-Jun 7-Sep
p41r28 26-Jun 30-Sep 8-Jul 13-Nov 7-Aug 23-Aug 4-Jul 24-Oct 27-Jul* 29-Sep*
p41r29 10-Jun 30-Sep 8-Jul 28-Oct 7-Aug 26-Oct 20-Jul 24-Oct 11-Jul* 13-Sep*
p42r36 21-Mar 5-Sep 1-Sep 6-Dec 30-Aug 4-Dec 1-Jan 15-Oct 4-Mar 15-Nov
p43r33 10-Jul 12-Sep 13-Feb 24-Sep 21-Aug 8-Oct 18-Jul 22-Oct 15-Jun 2-Aug
p43r35 20-Mar 28-Sep 1-Apr 8-Sep 15-Apr 5-Aug 31-May 2-Jul 14-May 19-Sep
p44r33 27-Mar 21-Oct 11-Jun 15-Sep 25-Jun 13-Sep 26-Aug 11-Sep 6-Jun 12-Oct
p44r34 17-Jul 11-Dec 11-Jun 17-Oct 5-Mar 15-Oct 26-Aug 11-Sep 18-Mar 25-Aug
p45r28 8-Jul 10-Sep 18-Jun 9-Nov 31-May 22-Oct 14-Jun 16-Jul 29-Jun 17-Sep
p45r30 24-Jul 10-Sep 18-Jun 24-Oct 3-Aug 22-Oct 14-Jun 16-Jul 23-Jul* 26-Oct*

Table A2
The number of burned and unburned pixels within the reference dataset (30 m resolution) included in the validation, using the “2 agreed” rendition of the reference dataset. NA pixels
were defined by CFMask provided with Landsat imagery and include pixels classified as cloud, cloud shadow and open water. Pixels classified as developed by the national Land Cover
Database are also included in NA pixels as they were masked out. Total pixels differ between years due to the inclusion of Landsat ETM + pairs with the scan-line error.

Ecoregion Year Burned pixels Burned count % Unburned pixels Unburned count % NA Pixels NA count % Total pixels

Arid West 1988 331,685 0.2 166,853,592 98.7 1,904,551 1.1 169,089,828
1993 500,630 0.3 161,023,414 95.2 7,564,736 4.5 169,088,780
1998 359,876 0.2 156,711,278 92.7 12,016,850 7.1 169,088,004
2003 225,537 0.1 156,353,322 92.5 12,500,433 7.4 169,079,292
2008 825,963 0.5 165,463,974 98.0 2,550,023 1.5 168,839,960

Mountain West 1988 459,910 0.5 87,418,460 89.0 10,330,854 10.5 98,209,224
1993 1613 0.0 58,352,910 59.4 39,861,155 40.6 98,215,678
1998 89,706 0.1 88,027,119 89.6 10,094,751 10.3 98,211,576
2003 301,934 0.3 88,876,309 90.5 9,033,066 9.2 98,211,309
2008 151,364 0.2 74,672,380 92.3 6,103,041 7.5 80,926,785

Great Plains 1988 111,506 0.1 107,521,042 91.8 9,532,519 8.1 117,165,067
1993 57,758 0.0 106,281,189 90.8 10,723,999 9.2 117,062,946
1998 78,606 0.1 91,735,746 78.3 25,309,490 21.6 117,123,842
2003 257,764 0.2 109,864,416 93.8 6,963,709 5.9 117,085,889
2008 54,262 0.0 76,326,944 67.8 36,125,470 32.1 112,506,676

East 1988 82,182 0.1 132,383,546 83.6 25,946,461 16.4 158,412,189
1993 118,247 0.1 143,539,259 90.6 14,749,169 9.3 158,406,675
1998 47,898 0.0 147,714,222 93.3 10,599,431 6.7 158,361,551
2003 530,594 0.3 136,604,865 86.3 21,111,702 13.3 158,247,161
2008 116,347 0.1 96,383,818 66.6 48,259,945 33.3 144,760,110
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